

Class QZ 15

|2x-7| > \frac{1}{2} \text{ shade}

|2x-7|=7 \text{ outside}

|2x-7|=7 \text{ outside}

|2x-7|=7 \text{
$$2x-7=-7$$
| $x=0$ | $x=0$

Solve by graphing

$$\begin{cases}
3 = x - 1 \\
4x - 3y = 24
\end{cases}$$
 $\begin{cases}
4x - 3y = 24
\end{cases}$
 $\begin{cases}
4x - 3y = 24
\end{cases}$
Use subs. method

 $\begin{cases}
4x - 3(-x - 1) = 24
\end{cases}$
 $\begin{cases}
4x - 3(-x - 1) = 24
\end{cases}$
 $\begin{cases}
4x + 3x + 3 = 24
\end{cases}$
Solution Set $\begin{cases}
3, +1 \\
3, +1
\end{cases}$

Solve by Subs. Method:

$$5x - 2(3x - 7) = 8$$

$$5x - 6x + 14 = 8$$

$$-x = 8 - 14$$

$$-x = -6$$

$$y = 3(6) - 7 = (8 - 7) = 11$$

$$y = 11$$

$$(6, 11)$$

$$\{(6, 11)\}$$

Solve by addition Method:

$$3x - 4y = 11$$
 $-3x + 2y = -7$
 $-2y = 4$
 $-2y$

Solve by addition method:

$$\begin{cases}
3x + 4y = -10 \\
2 + 5x - 2y = 18
\end{cases}$$

$$\begin{cases}
10x - 4y = 36
\end{cases}$$

$$3x + 4y = -10
\end{cases}$$

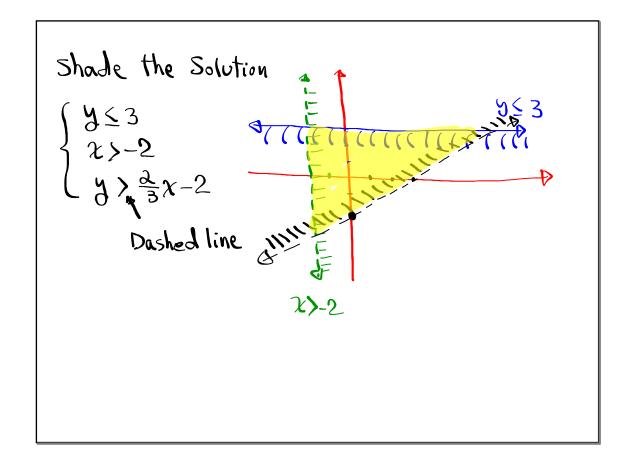
$$3(2) + 4y = -10
\end{cases}$$

$$(2, -4)$$

$$(2, -4)$$

Solve by addition Method:

$$3 \begin{cases} 7x + 2y = 5 \\ -2 \begin{cases} 2x + 6y = 15 \\ -4x - 6y = -32 \end{cases}$$


$$\frac{2x}{4} + 3y = 16$$

$$\frac{2x}{4} + 3y = 16$$

$$\frac{3y}{4} = 18$$

Solve

$$2 \int 5x - 2y = 4$$

 $-10x + 4y = 7$
 $0 = 15$
Salse $\Rightarrow 0$
 $15x - 5y = 10$
 $15x - 5y = 10$
 $10 = 10$
 $10 = 10$
Thue
 $(x,y) \mid y = 3x - 2$
inhinite # of
Solutions

Solve
$$|2x-7| = |2x+7| = 0$$

 $|2x-7| = |2x+7|$ OR $|2x-7| = -(2x+7)|$
 $|2x-7| = |2x+7|$ OR $|2x-7| = -(2x+7)|$
 $|2x-7| = |2x+7|$ $|2x-7| = -2x-7|$
 $|3x-2x=7+7|$ $|2x+2x=-7+7|$
Solse $|4x=0|$
 $|x=0|$

Solve
$$|3x+2|+7<4$$

 $|3x+2|<4-7$
 $|3x+2|<-3$ Salse
 \emptyset
Solve $-2|5x-3|-7<5$ $|5x-3|>-6$
 $-2|5x-3|<12$ True
 $|5x-3|>\frac{12}{-2}$ R

Simplify:
$$\frac{\chi^2 - 7\chi - 18}{3\chi^2 + 3\chi - 2} = \frac{(\chi - 9)(\chi + 2)}{(3\chi - 1)(\chi + 2)}$$

$$= \frac{\chi - 9}{2\chi - 1}$$
Divide: $\frac{5\chi + 5}{7\chi^2 - 7\chi} = \frac{4\chi^2 - 9}{2\chi^2 + \chi - 3}$

$$= \frac{5\chi + 5}{7\chi^2 - 7\chi} \cdot \frac{2\chi^2 + \chi - 3}{4\chi^2 - 9}$$

$$= \frac{5(\chi + 1)}{7\chi(\chi - 1)} \cdot \frac{(\chi + 2)(\chi + 1)}{(\chi + 2)(\chi - 3)}$$

$$= \frac{5(\chi + 1)}{7\chi(2\chi - 3)}$$

Simplify:
$$\frac{\chi^2}{\chi^2} + 3\chi - 10$$
 $\frac{\chi^2}{43\chi - 10}$ $\frac{\chi^2}{\chi^2 + 3\chi - 10}$

Simplify:
$$\frac{3}{\chi^{2} + \chi - 6} = \frac{2}{\chi^{2} + 4\chi + 3}$$

$$= \frac{3(\chi + 1)}{(\chi + 3)(\chi - 2)(\chi + 1)} = \frac{2(\chi - 2)}{(\chi + 3)(\chi - 2)(\chi + 1)}$$

$$= \frac{3(\chi + 1)}{(\chi + 3)(\chi - 2)(\chi + 1)} = \frac{\chi + 7}{(\chi + 3)(\chi - 2)(\chi + 1)}$$

Cross-Multiply, then Solve
$$\frac{3}{2-2} = \frac{2}{2+1} \qquad x-2\neq 0 \qquad x+1\neq 0$$

$$\frac{3}{2-2} = \frac{2}{2+1} \qquad x\neq 2 \qquad x\neq -1$$

$$3(x+1) = 2(x-2) \qquad \uparrow$$

$$3x + 3 = 2x - 4 \qquad \text{Excluded Values}$$

$$3x - 2x = -4 - 3$$

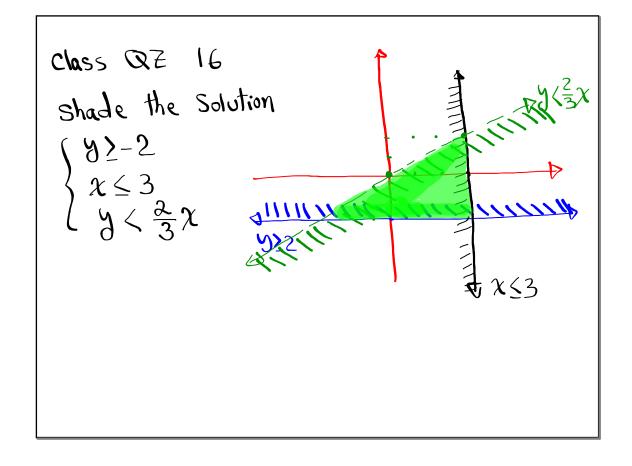
$$x = -7 \qquad \{-7\}$$

Solve:

$$\frac{\chi}{\chi-3} = \frac{3}{\chi-3} + 9$$
Multiply by
$$L(D = \chi-3)$$

$$\chi = 3 + 9(\chi-3)$$

$$\chi = 3 + 9\chi - 27$$


$$\chi = 3 - 27$$

$$-8\chi = -24$$
Hint:
Multiply by
$$\chi = \chi - 3 + 0$$

$$\chi = 3 + 0$$

$$\chi = 3 + 0$$

$$\chi = 3 + 0$$
E.V.
$$\chi = 3 + 0$$

